An eco-friendly electrolyte additive for high-power primary aqueous Mg-air batteries
Inorganic Chemistry Frontiers, ISSN: 2052-1553, Vol: 10, Issue: 23, Page: 6879-6891
2023
- 10Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The performance of aqueous Mg-air batteries is predominantly constrained by two factors: the high polarization effect caused by the adherence of surface passive film, and the low efficiency resulting from the self-corrosion reaction. In this study, we propose the use of glycine as an electrolyte additive in 3.5 wt% NaCl solution to enhance the practical application of commercial AZ31 magnesium alloys at high current densities. The AZ31 alloy in blank NaCl solution with 0.1 M Gly displays a high discharge voltage of 0.81 V, with an anodic efficiency of 64% and a peak power density of 48.6 mW cm at 60 mA cm, which is about 42% higher than that of AZ31 in blank electrolyte (33.2 mW cm) without Gly. Furthermore, we elucidate the working mechanism in NaCl solution containing the electrolyte additive during discharge through theoretical calculations and experimental analysis, which significantly enhances the discharge activity and accelerates the mass transfer process of the electrode. All results demonstrate that glycine is a valid electrolyte additive for improving the discharge performance of high-power Mg-air batteries based on commercial AZ31 alloy.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know