Exploring the effect of the reaction conditions on the mechanism of the photocatalytic reduction of CO in the vapor phase over Pt/TiO: an operando FTIR study
Inorganic Chemistry Frontiers, ISSN: 2052-1553, Vol: 10, Issue: 24, Page: 7155-7166
2023
- 3Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The utilization of photocatalysis for CO conversion into solar fuels holds significant promise for advancing clean energy solutions; however, there are still many uncertainties regarding the surface mechanisms of the reaction, even for the most commonly studied TiO-based photocatalytic systems. Of special relevance is the origin of photoconverted products and the role played by adventitious carbon species on the photocatalyst surface, whose nature and origin lack unambiguous identification to date. In this study, we investigated the dynamic nature of vapor-phase photocatalytic CO reduction using a benchmark Pt/TiO photocatalyst. To identify carbon species on the photocatalyst surface, we reported a comprehensive analytical approach involving X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and operando Fourier-transform infrared (FTIR) spectroscopy during the activation and photocatalytic reduction of CO. Through this multi-technique approach, we were able to differentiate initial carbonaceous surface species and identify active intermediates during reactions. Upon irradiation, carbon species in the form of carboxylates get involved in reactions with photocatalytically activated surface adsorbed water and can contribute to 40% of methane yields in the first few minutes of irradiation, therefore hindering a reliable quantification of CO conversion levels. This was confirmed by exposure of the catalyst to light and water vapor during ten irradiation cycles, which significantly reduced the amount of methane and C-species on the catalyst surface. Transient activity was identified as the dominant factor driving methane production. Moreover, reactivation of the catalyst can be achieved through periodic irradiation conditions, leading to a remarkable 60% increase in methane production yields during 180 minutes of irradiation. These findings shed light on the mechanisms occurring on the photocatalyst surface upon light/dark transition steps and demonstrate the potential for enhancing CO photoreduction performance through periodic irradiation strategies.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know