Impact fracture mechanism and heat deflection temperature of PLA/PEICT blends reinforced by glass fiber
RSC Advances, ISSN: 2046-2069, Vol: 13, Issue: 32, Page: 22315-22324
2023
- 3Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- Captures7
- Readers7
Article Description
To enhance the crack propagation and initiation properties and heat deflection temperature of poly(lactic acid) (PLA), PLA/poly(1,4-cyclohexanedimethylene isosorbide terephthalate) (PEICT) blend systems were prepared and glass fibers (GF) were incorporated as reinforcements. Due to high shear force during extrusion and injection molding the length of GF was reduced and was oriented towards the flow direction. Although the reinforcing effect of the GF deviated from the theoretical values calculated by the Halpin-Tsai equation, both tensile and flexural properties were greatly enhanced with increasing GF content. Dynamic mechanical and thermal testing showed improved storage modulus throughout the entire temperature range showing outstanding reinforcing ability. By incorporating GF into the PLA/PEICT blend, the crack propagation and initiation properties were enhanced compared to pristine PLA. Such an increase in crack propagation properties was the result of enhanced modulus with the added GF. Moreover, because of the increased modulus, the heat deflection temperatures of the GF reinforced blends were drastically increased showing a value of 91.4 °C at 20 wt% GF loading. The high performance reached by the biomass-based composites developed in this research shows great possibility of replacing these conventional petroleum-based polymer systems.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85169294282&origin=inward; http://dx.doi.org/10.1039/d3ra03692h; http://www.ncbi.nlm.nih.gov/pubmed/37497093; https://xlink.rsc.org/?DOI=D3RA03692H; https://dx.doi.org/10.1039/d3ra03692h; https://pubs.rsc.org/en/content/articlelanding/2023/ra/d3ra03692h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know