pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet
Chemical Science, ISSN: 2041-6539, Vol: 14, Issue: 33, Page: 8850-8859
2023
- 11Citations
- 25Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Studies from University of Valencia in the Area of Nanomagnets Described [Ph-switching of the Luminescent, Redox, and Magnetic Properties In a Spin Crossover Cobalt(Ii) Molecular Nanomagnet]
2023 SEP 11 (NewsRx) -- By a News Reporter-Staff News Editor at Nanotech Daily -- Current study results on Nanotechnology - Nanomagnets have been published.
Article Description
The ability of mononuclear first-row transition metal complexes as dynamic molecular systems to perform selective functions under the control of an external stimulus that appropriately tunes their properties may greatly impact several domains of molecular nanoscience and nanotechnology. This study focuses on two mononuclear octahedral cobalt(ii) complexes of formula {[Co(HL)][Co(HL)L]}(ClO)·9HO (1) and [CoL]·5HO (2) [HL = 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine], isolated as a mixed protonated/hemiprotonated cationic salt or a deprotonated neutral species. This pair of pH isomers constitutes a remarkable example of a dynamic molecular system exhibiting reversible changes in luminescence, redox, and magnetic (spin crossover and spin dynamics) properties as a result of ligand deprotonation, either in solution or solid state. In this last case, the thermal-assisted spin transition coexists with the field-induced magnetisation blockage of “faster” or “slower” relaxing low-spin Co ions in 1 or 2, respectively. In addition, pH-reversible control of the acid-base equilibrium among dicationic protonated, cationic hemiprotonated, and neutral deprotonated forms in solution enhances luminescence in the UV region. Besides, the reversibility of the one-electron oxidation of the paramagnetic low-spin Co into the diamagnetic low-spin Co ion is partially lost and completely restored by pH decreasing and increasing. The fine-tuning of the optical, redox, and magnetic properties in this novel class of pH-responsive, spin crossover molecular nanomagnets offers fascinating possibilities for advanced multifunctional and multiresponsive magnetic devices for molecular spintronics and quantum computing such as pH-effect spin quantum transformers.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85167503507&origin=inward; http://dx.doi.org/10.1039/d3sc02777e; http://www.ncbi.nlm.nih.gov/pubmed/37621442; https://xlink.rsc.org/?DOI=D3SC02777E; https://dx.doi.org/10.1039/d3sc02777e; https://pubs.rsc.org/en/content/articlelanding/2023/sc/d3sc02777e
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know