Dynamics of bubbles spontaneously entering into a tube
Soft Matter, ISSN: 1744-6848, Vol: 19, Issue: 30, Page: 5758-5762
2023
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
When an open tube of small diameter touches a bubble of a larger diameter, the bubble spontaneously shrinks and pushes a soap film into the tube. We characterize the dynamics for different bubble sizes and number of soap films in the tube. We rationalize this observation from a mechanical force balance involving the Laplace pressure of the bubble and the viscous force from the advancing soap lamellae in the tube. We propose a numerical resolution of this model, and an analytical solution in an asymptotic regime. These predictions are then compared to the experiments. The emptying duration is primarily affected by the initial bubble to tube diameter ratio and by the number of soap films in the tube.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85166208998&origin=inward; http://dx.doi.org/10.1039/d3sm00677h; http://www.ncbi.nlm.nih.gov/pubmed/37465921; https://xlink.rsc.org/?DOI=D3SM00677H; https://dx.doi.org/10.1039/d3sm00677h; https://pubs.rsc.org/en/content/articlelanding/2023/sm/d3sm00677h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know