PlumX Metrics
Embed PlumX Metrics

Determination of interaction parameters in a bottom-up approach employed in reactive dissipative particle dynamics simulations for thermosetting polymers

Soft Matter, ISSN: 1744-6848, Vol: 20, Issue: 23, Page: 4591-4607
2024
  • 1
    Citations
  • 0
    Usage
  • 5
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The limitations in previous dissipative particle dynamics (DPD) studies confined simulations to a narrow resin range. This study refines DPD parameter calculation methodology, extending its application to diverse polymer materials. Using a bottom-up approach with molecular dynamics (MD) simulations, we evaluated solubility parameters and bead number density governing nonbonded interactions via the Flory-Huggins parameter and covalent-bonded interactions. Two solubility parameter methods, Hildebrand and Krevelen-Hoftyzer, were compared for DPD simulations. The Hildebrand method, utilizing MD simulations, demonstrates higher consistency and broader applicability in determining solubility parameters for all DPD particles. The DPD/MD curing reaction process was examined in three epoxy systems: DGEBA/4,4′-DDS, DGEBA/MPDA and DGEBA/DETA. Calculations for the curing profile, gelation point, radial distribution function and branch ratio were performed. Compared to MD data for DGEBA/4,4′-DDS, the maximum deviation in secondary reactions between epoxy and amine groups according to DPD simulations with Krevelen-Hoftyzer was 14.8%, while with the Hildebrand method, it was 1.7%. The accuracy of the DPD curing reaction in reproducing the structural properties verifies its expanded application to general polymeric material simulations. The proposed curing DPD simulations, with a short run time and minimal computational resources, contributes to high-throughput screening for optimal resins and investigates mesoscopic inhomogeneous structures in large resin systems.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know