Identification, targeted separation, and in vivo and in vitro anti-vascular endothelial injury abilities of bioactive compounds from Acanthopanax senticosus
Food and Function, ISSN: 2042-650X, Vol: 16, Issue: 8, Page: 3134-3151
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Acanthopanax senticosus (Rupr. et Maxim.) Harms, a traditional medicinal and edible crop cultivated in China, exhibits extensive biological activities. In the present research, a screening and targeted isolation method using affinity ultrafiltration-UPLC-MS with GNPS (AUF-LC-MS-GNPS) methods was established and used to further verify the protective effect and potential mechanism of monomers on a vascular endothelial injury model. By utilizing the AUF-LC-MS-GNPS strategy, 9 potential active monomers were target isolated and 22 other compounds were obtained from Acanthopanax senticosus. The anti-endothelial injury activity of the monomers was further verified through in vitro cell experiments, which showed that the 9 monomers had protective effects on HUVECs damaged by oxidized low-density lipoprotein (ox-LDL), and could increase the levels of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor A (VEGFA) while reducing the level of endothelin (ET)-1. Furthermore, an in vivo zebrafish experiment against lipopolysaccharide (LPS) damage proved the protective effects of the isolated monomers. Our research established a bioactive screening and targeted separation method by comprehensively utilizing an AUF, LC-MS and GNPS network. Concurrently, Acanthopanax senticosus may be a natural source of bioactive components, as well as possessing anti-endothelial injury activity.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=105001795988&origin=inward; http://dx.doi.org/10.1039/d4fo04856c; http://www.ncbi.nlm.nih.gov/pubmed/40159904; https://xlink.rsc.org/?DOI=D4FO04856C; https://dx.doi.org/10.1039/d4fo04856c; https://pubs.rsc.org/en/content/articlelanding/2025/fo/d4fo04856c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know