Layer-dependent ultrafast carrier dynamics of PdSe investigated by photoemission electron microscopy
Nanoscale, ISSN: 2040-3372, Vol: 16, Issue: 19, Page: 9317-9324
2024
- 1Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Article Description
For atomically thin two-dimensional materials, variations in layer thickness can result in significant changes in the electronic energy band structure and physicochemical properties, thereby influencing the carrier dynamics and device performance. In this work, we employ time- and energy-resolved photoemission electron microscopy to reveal the ultrafast carrier dynamics of PdSe with different layer thicknesses. We find that for few-layer PdSe with a semiconductor phase, an ultrafast hot carrier cooling on a timescale of approximately 0.3 ps and an ultrafast defect trapping on a timescale of approximately 1.3 ps are unveiled, followed by a slower decay of approximately tens of picoseconds. However, for bulk PdSe with a semimetal phase, only an ultrafast hot carrier cooling and a slower decay of approximately tens of picoseconds are observed, while the contribution of defect trapping is suppressed with the increase of layer number. Theoretical calculations of the electronic energy band structure further confirm the transition from a semiconductor to a semimetal. Our work demonstrates that TR- and ER-PEEM with ultrahigh spatiotemporal resolution and wide-field imaging capability has great advantages in revealing the intricate details of ultrafast carrier dynamics of nanomaterials.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85191290287&origin=inward; http://dx.doi.org/10.1039/d4nr00281d; http://www.ncbi.nlm.nih.gov/pubmed/38656387; https://xlink.rsc.org/?DOI=D4NR00281D; https://dx.doi.org/10.1039/d4nr00281d; https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr00281d
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know