Electrooxidative iridium-catalyzed sp C-H activation-annulation leading to cationic π-extended heteroaromatics
Organic Chemistry Frontiers, ISSN: 2052-4129, Vol: 11, Issue: 17, Page: 4849-4856
2024
- 3Citations
Metric Options: Counts3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
Article Description
This study demonstrates an electrochemically driven, Ir(iii)-catalyzed method for pyridine-, azo-, and purine-directed olefinic and aromatic C(sp)-H activation and regioselective annulation with alkynes for the synthesis of biologically useful quaternary ammonium salts. This approach notably eliminates the need for stoichiometric amounts of external oxidants, offering a broader substrate scope along with improved product regioselectivity under mild electrolysis conditions as compared to previously employed strong oxidant conditions. Detailed mechanistic insights, including the isolation, characterization, and cyclovoltammetric analysis of catalytically relevant iridium(iii) and iridium(i) intermediates, provided strong supporting evidence for an Ir(iii/i) catalytic cycle operation.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know