Catalytic performance and mechanism study of the isomerization of 2,5-dichlorotoluene to 2,4-dichlorotoluene
RSC Advances, ISSN: 2046-2069, Vol: 14, Issue: 13, Page: 8709-8717
2024
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
This work investigates the influence of catalyst HZSM-5 on the isomerization of 2,5-dichlorotoluene (2,5-DCT) to produce 2,4-dichlorotoluene (2,4-DCT). We observe that hydrothermal treatment leads to a decrease in total acidity and Brønsted/Lewis ratio of HZSM-5 while generating new secondary pores. These characteristics result in excellent selectivity for post-hydrothermal modified HZSM-5 in the isomerization reaction from 2,5-DCT to 2,4-DCT. Under atmospheric pressure at 350 °C, unmodified HZSM-5 achieves a selectivity of 66.4% for producing 2,4-DCT, however after hydrothermal modification the selectivity increases to 78.7%. Density Functional Theory (DFT) calculations explore the thermodynamic aspects of adsorption between the HZSM-5 surface and 2,4-DCT. The kinetic perspective investigates the mechanism involving proton attack on the methyl group of 2,5-DCT followed by rearrangement leading to formation of 2,4-DCT during isomerization. The consistency between simulation and experimental results provides evidence for the feasibility of isomerizing 2,5-DCT to 2,4-DCT. This work fills the gap in the low value-added product 2,5-DCT isomer conversion, indicating its significant practical application potential and provides a valuable reference and guidelines for industrial research in this field.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85187776069&origin=inward; http://dx.doi.org/10.1039/d4ra00223g; http://www.ncbi.nlm.nih.gov/pubmed/38495976; https://xlink.rsc.org/?DOI=D4RA00223G; https://dx.doi.org/10.1039/d4ra00223g; https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra00223g
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know