Machine learning aided design of high performance copper-based sulfide photocathodes
Journal of Materials Chemistry A, ISSN: 2050-7496, Vol: 12, Issue: 47, Page: 33125-33132
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Copper-based sulfide photocathodes have shown impressive performance in solar water splitting applications due to their narrow bandgaps, high absorption coefficients, and good carrier transport properties. Several factors, such as composition, thickness, and doping, have a direct influence on the onset potential, photocurrent density, and solar-to-hydrogen efficiency. Screening for the optimal combination in the presence of multiple variables is undoubtedly a challenging task. However, constructing a comprehensive database, developing photocathode models, and utilizing machine learning to derive the best results clearly save a significant amount of experimental effort. This approach efficiently reduces the experimental workload, streamlines the process, and expedites the development of high-performance materials for photoelectrochemical water splitting applications. Here, we introduce a comprehensive machine learning process to guide the preparation of copper-based sulfide photocathodes. The random forest model was selected to train and capture the complex relationship between different layers of copper-based sulfide photocathodes and electrolytes to predict unstudied conditions, and the accuracy of the test set reached 96.7%. Through SHAP interpretability analysis, we provide heuristic rules to deepen the understanding of the influence of different factors on the performance of the catalytic system. We also developed a prediction platform to share our prediction models.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know