A dilute ferromagnetic ZrO/carbon nanocomposite derived from a zirconium-based metal-organic framework for high-performance electromagnetic wave absorption
Journal of Materials Chemistry C, ISSN: 2050-7534, Vol: 12, Issue: 40, Page: 16617-16630
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Metal-organic frameworks (MOFs) have been intensively studied for electromagnetic wave absorption (EMA) due to their special structure and rich carbon and metallic sources. MOFs constructed from ferromagnetic metallic ions are frequently applied as precursors in the synthesis of MOF-based magnetoelectric composite absorbers. Considering the large population of the MOF family, the choice of only ferromagnetic metallic ions for the construction of MOF-based absorbers largely limits the broader development of MOFs. Here, a series of dilute ferromagnetic ZrO/carbon nanocomposites have been fabricated based on a Zr-MOF (NU-1000), and their dilute ferromagnetic and dielectric properties can be readily tuned by varying the calcination temperature. The combination of dilute ferromagnetic ZrO with suitable dielectric properties of carbon and harmonic impedance matching properties gives the ZrO/C_700 nanocomposite with superb electromagnetic attenuation capabilities, with a minimum reflection loss (RL) value of −59.69 dB at 2.8 mm and a maximum effective absorption bandwidth (EAB) value of 6.44 GHz found at 2.36 mm, covering the entire Ku band. This work provides new insights into the development of non-ferromagnetic-based MOFs as magneto-dielectric coexistence absorbers. In addition, the significant potential of the ZrO/C_700 nanocomposite as a high-performance EMA material for practical applications is further confirmed based on the results of radar cross section (RCS) simulations.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know