Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: The importance of AMPK-independent regulation of intermediate filaments during exercise
Biochemical Journal, ISSN: 1470-8728, Vol: 474, Issue: 4, Page: 557-569
2017
- 16Citations
- 36Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- CrossRef10
- Captures36
- Readers36
- 36
Article Description
The obligatory role of carnitine palmitoyltransferase-I (CPT-I) in mediating mitochondrial lipid transport is well established, a process attenuated by malonyl-CoA (M-CoA). However, the necessity of reducing M-CoA concentrations to promote lipid oxidation has recently been challenged, suggesting external regulation on CPT-I. Since previous work in hepatocytes suggests the involvement of the intermediate filament fraction of the cytoskeleton in regulating CPT-I, we investigated in skeletal muscle if CPT-I sensitivity for M-CoA inhibition could be regulated by the intermediate filaments, and whether AMP-activated protein kinase (AMPK) could be involved in this process. Chemical disruption (3,3′-iminodipropionitrile, IDPN) of the intermediate filaments did not alter mitochondrial respiration or sensitivity for numerous substrates ( palmitoyl-CoA, ADP, palmitoyl carnitine and pyruvate). In contrast, IDPN reduced CPT-I sensitivity for M-CoA inhibition in permeabilized muscle fibers, identifying M-CoA kinetics as a specific target for intermediate filament regulation. Importantly, exercise mimicked the effect of IDPN on M-CoA sensitivity, suggesting that intermediate filament disruption in vivo is physiologically important for CPT-I regulation. To ascertain a potential mechanism, since AMPK is activated during exercise, AMPK β1β2-KO mice were utilized in an attempt to ablate the observed exercise response. Unexpectedly, these mice displayed drastic attenuation in resting M-CoA sensitivity, such that exercise and IDPN could not further alter M-CoA sensitivity. These data suggest that AMPK is not required for the regulation of the intermediate filament interaction with CPT-I. Altogether, these data highlight that M-CoA sensitivity is important for regulating mitochondrial lipid transport. Moreover, M-CoA sensitivity appears to be regulated by intermediate filament interaction with CPT-I, a process that is important when metabolic homeostasis is challenged.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85014733966&origin=inward; http://dx.doi.org/10.1042/bcj20160913; http://www.ncbi.nlm.nih.gov/pubmed/27941154; https://portlandpress.com/biochemj/article/474/4/557/49570/Controlling-skeletal-muscle-CPT-I-malonyl-CoA; http://biochemj.org/lookup/doi/10.1042/BCJ20160913; https://syndication.highwire.org/content/doi/10.1042/BCJ20160913; https://dx.doi.org/10.1042/bcj20160913; https://portlandpress.com/biochemj/article-abstract/474/4/557/49570/Controlling-skeletal-muscle-CPT-I-malonyl-CoA?redirectedFrom=fulltext
Portland Press Ltd.
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know