Oxidative footprinting in the study of structure and function of membrane proteins: Current state and perspectives
Biochemical Society Transactions, ISSN: 1470-8752, Vol: 43, Issue: 5, Page: 983-994
2015
- 15Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef11
- Captures17
- Readers17
- 17
Article Description
Membrane proteins, such as receptors, transporters and ion channels, control the vast majority of cellular signalling and metabolite exchange processes and thus are becoming key pharmacological targets. Obtaining structural information by usage of traditional structural biology techniques is limited by the requirements for the protein samples to be highly pure and stable when handled in high concentrations and in nonnative buffer systems, which is often difficult to achieve for membrane targets. Hence, there is a growing requirement for the use of hybrid, integrative approaches to study the dynamic and functional aspects of membrane proteins in physiologically relevant conditions. In recent years, significant progress has been made in the field of oxidative labelling techniques and in particular the X-ray radiolytic footprinting in combination with mass spectrometry (MS) (XF-MS), which provide residue-specific information on the solvent accessibility of proteins. In combination with both low- and high-resolution data from other structural biology approaches, it is capable of providing valuable insights into dynamics of membrane proteins, which have been difficult to obtain by other structural techniques, proving a highly complementary technique to address structure and function of membrane targets. XF-MS has demonstrated a unique capability for identification of structural waters and conformational changes in proteins at both a high degree of spatial and a high degree of temporal resolution. Here, we provide a perspective on the place of XF-MS among other structural biology methods and showcase some of the latest developments in its usage for studying water-mediated transmembrane (TM) signalling, ion transport and ligand-induced allosteric conformational changes in membrane proteins.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84947212667&origin=inward; http://dx.doi.org/10.1042/bst20150130; http://www.ncbi.nlm.nih.gov/pubmed/26517913; https://portlandpress.com/biochemsoctrans/article/43/5/983/65504/Oxidative-footprinting-in-the-study-of-structure; http://biochemsoctrans.org/cgi/doi/10.1042/BST20150130; https://dx.doi.org/10.1042/bst20150130; https://portlandpress.com/biochemsoctrans/article-abstract/43/5/983/65504/Oxidative-footprinting-in-the-study-of-structure?redirectedFrom=fulltext
Portland Press Ltd.
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know