RootsGloh2: Embedding RootSIFT 'square rooting' in sGLOH2
IET Computer Vision, ISSN: 1751-9640, Vol: 14, Issue: 4, Page: 138-143
2020
- 5Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study introduces an extension of the sGLOH2 local image descriptor inspired by RootSIFT 'square rooting' as a way to indirectly alter the matching distance used to compare the descriptor vectors. The extended descriptor, named RootsGLOH2, achieved the best results in terms of matching accuracy and robustness among the latest state-of-the-art non-deep descriptors in recent evaluation contests dealing with both planar and non-planar scenes. RootsGLOH2 also achieves a matching accuracy very close to that obtained by the best deep descriptors to date. Beside confirming that 'square rooting' has beneficial effects on sGLOH2 as it happens on SIFT, experimental evidence shows that classical norm-based distances, such as the Euclidean and Manhattan distances, only provide suboptimal solutions to the problem of local image descriptor matching. This suggests matching distance design as a topic to investigate further in the near future.
Bibliographic Details
Institution of Engineering and Technology (IET)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know