Stochastic home energy management system via approximate dynamic programming
IET Energy Systems Integration, ISSN: 2516-8401, Vol: 2, Issue: 4, Page: 382-392
2020
- 15Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study proposes an approximate dynamic programming (ADP) method for a stochastic home energy management system (HEMS) that aims to minimise the electricity cost and discomfort of a household under uncertainties. The study focuses on a HEMS that optimally schedules heating, ventilation, and air conditioning, water heater, and electric vehicle, while accounting for uncertainties in outside temperature, hot water usage, and non-controllable net load. The authors approach the ADP-based HEMS via an effective combination of Sobol sampling backward induction and a K-D tree nearest neighbour techniques for the value function approximation. A subset of possible states is sampled and used to create an approximation of the value of being in aggregated states. They compare the ADP approach with other prevailing HEMS methods, including dynamic programming (DP) and mixed-integer linear programming (MILP), in a model predictive control framework. Simulation results show that the proposed ADP approach can yield near-optimal appliance schedules under uncertainties when finely discretised. Merits and drawbacks of the proposed ADP method in comparison with DP and MILP are also revealed.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85106959412&origin=inward; http://dx.doi.org/10.1049/iet-esi.2020.0060; https://digital-library.theiet.org/content/journals/10.1049/iet-esi.2020.0060; https://digital-library.theiet.org/content/journals/10.1049/iet-esi.2020.0060?crawler=true&mimetype=application/pdf
Institution of Engineering and Technology (IET)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know