Vehicle counting and traffic flow parameter estimation for dense traffic scenes
IET Intelligent Transport Systems, ISSN: 1751-956X, Vol: 14, Issue: 12, Page: 1517-1523
2020
- 21Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The vision-based traffic flow parameter estimation is a challenging problem especially for dense traffic scenes, due to the difficulties of occlusion, small-size and dense traffic etc. Yet, previous methods mainly use detection and tracking methods to do vehicle counting in non-dense traffic scenes and few of them further estimate traffic flow parameters in dense traffic scenes. A framework is proposed to count vehicles and estimate traffic flow parameters in dense traffic scenes. First, a pyramid-YOLO network is proposed for detecting vehicles in dense scenes, which can effectively detect small-size and occluded vehicles. Second, the authors design a line of interest counting method based on restricted multi-tracking, which counts vehicles crossing a counting line at a certain time duration. The proposed tracking method tracks short-term vehicle trajectories near the counting line and analyses the trajectories, thus improving tracking and counting accuracy. Third, based on the detection and counting results, an estimation model is proposed to estimate traffic flow parameters of volume, speed and density. The evaluation experiments on the databases with dense traffic scenes show that the proposed framework can efficiently count vehicles and estimate traffic flow parameters with high accuracy and outperforms the representative estimation methods in comparison.
Bibliographic Details
Institution of Engineering and Technology (IET)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know