Improving pulse eddy current and ultrasonic testing stress measurement accuracy using neural network data fusion
IET Science, Measurement and Technology, ISSN: 1751-8822, Vol: 9, Issue: 4, Page: 514-521
2015
- 27Citations
- 34Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Stress and residual stress are two crucial factors which play important roles in mechanical performance of materials, including fatigue and creep, hence measuring them is highly in demand. Pulse eddy current (PEC) and ultrasonic testing (UT) are two non-destructive tests (NDT) which are nominated to measure stresses and residual stresses by numerous scholars. However, both techniques suffer from lack of accuracy and reliability. One technique to tackle these challenges is data fusion, which has numerous approaches. This study introduces a promising one called neural network data fusion, which shows effective performance. First, stresses are simulated in an aluminium alloy 2024 specimen and then PEC and UT signals related to stresses are acquired and processed. Afterward, useful information obtained is fused using artificial neural network procedure and stresses are estimated by fused data. Finally, the accuracy of fused data are compared with PEC and UT information and results show the capability of neural network data fusion to improve stress measurement accuracy.
Bibliographic Details
Institution of Engineering and Technology (IET)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know