Radial transport of refractory inclusions and their preservation in the dead zone
Astronomy and Astrophysics, ISSN: 0004-6361, Vol: 526, Issue: 12
2011
- 36Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Calcium-aluminum-rich inclusions (CAIs) are the oldest solar system solids known in primitive meteorites (chondrites). They predate the other components by 1-2 Myr, and likely condensed within a short time interval, close to the Sun in the gaseous protoplanetary disk. Their preservation must counterbalance both the sunward drift caused by gas drag and the general inward motion of the entraining gas. We propose that an efficient outward transport of CAIs can be achieved by advection as a result of the viscous expansion of the disk, provided it is initially less than 10 AU in size, which we argue is plausible from both observational and theoretical points of view. Gas drag would stop this outward motion within 10 yr. However, by that time, a magnetically dead zone would have developed as gravitational instabilities fade away, which would trap CAIs for a significant fraction of the disk lifetime because of the reduced advection velocities. The dead zone would also prevent outward diffusion of subsequently condensed CAIs, contributing to their observed narrow age range. This preservation mechanism is independent of the outward transport scenario (before the dead zone formation) and a natural consequence of considering the source of turbulence in accretion disks. © 2011 ESO.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=78650915621&origin=inward; http://dx.doi.org/10.1051/0004-6361/201016118; http://www.aanda.org/10.1051/0004-6361/201016118; http://www.aanda.org/10.1051/0004-6361/201016118/pdf; https://dx.doi.org/10.1051/0004-6361/201016118; https://www.aanda.org/articles/aa/full_html/2011/02/aa16118-10/aa16118-10.html
EDP Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know