Herschel -HIFI observations of high- J CO and isotopologues in star-forming regions: From low to high mass
Astronomy and Astrophysics, ISSN: 1432-0746, Vol: 553
2013
- 38Citations
- 27Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Context. Our understanding of the star formation process has traditionally been confined to certain mass or luminosity boundaries because most studies focus only on low-, intermediate-, or high-mass star-forming regions. Therefore, the processes that regulate the formation of these different objects have not been effectively linked. As part of the "Water In Star-forming regions with Herschel" (WISH) key programme, water and other important molecules, such as CO and OH, have been observed in 51 embedded young stellar objects (YSOs). The studied sample covers a range of luminosities from <1 to >10 L. Aims. We analyse the CO line emission towards a large sample of embedded protostars in terms of both line intensities and profiles. This analysis covers a wide luminosity range in order to achieve better understanding of star formation without imposing luminosity boundaries. In particular, this paper aims to constrain the dynamics of the environment in which YSOs form. Methods. Herschel-HIFI spectra of the CO J = 10-9, CO J = 10-9 and CO J = 5-4, J = 9-8 and J = 10-9 lines were analysed for a sample of 51 embedded protostars. In addition, JCMT spectra of CO J = 3-2 and CO J = 3-2 extend this analysis to cooler gas components. We focussed on characterising the shape and intensity of the CO emission line profiles by fitting the lines with one or two Gaussian profiles. We compared the values and results of these fits across the entire luminosity range covered by WISH observations. The effects of different physical parameters as a function of luminosity and the dynamics of the envelope-outflow system were investigated. Results. All observed CO and isotopologue spectra show a strong linear correlation between the logarithms of the line and bolometric luminosities across six orders of magnitude on both axes. This suggests that the high-J CO lines primarily trace the amount of dense gas associated with YSOs and that this relation can be extended to larger (extragalactic) scales. The majority of the detected CO line profiles can be decomposed into a broad and a narrow Gaussian component, while the CO spectra are mainly fitted with a single Gaussian. For low- and intermediate-mass protostars, the width of the CO J = 9-8 line is roughly twice that of the CO J = 3-2 line, suggesting increased turbulence/infall in the warmer inner envelope. For high-mass protostars, the line widths are comparable for lower- and higher-J lines. A broadening of the line profile is also observed from pre-stellar cores to embedded protostars, which is due mostly to non-thermal motions (turbulence/infall). The widths of the broad CO J = 3-2 and J = 10-9 velocity components correlate with those of the narrow CO J = 9-8 profiles, suggesting that the entrained outflowing gas and envelope motions are related but independent of the mass of the protostar. These results indicate that physical processes in protostellar envelopes have similar characteristics across the studied luminosity range. © ESO, 2013.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84878294794&origin=inward; http://dx.doi.org/10.1051/0004-6361/201220472; http://www.aanda.org/10.1051/0004-6361/201220472; http://www.aanda.org/10.1051/0004-6361/201220472/pdf; https://dx.doi.org/10.1051/0004-6361/201220472; https://www.aanda.org/articles/aa/full_html/2013/05/aa20472-12/aa20472-12.html
EDP Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know