Nucleosynthetic yields of Z = 10intermediate-mass stars
Astronomy and Astrophysics, ISSN: 1432-0746, Vol: 645
2021
- 12Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Context. Observed abundances of extremely metal-poor stars in the Galactic halo hold clues for understanding the ancient universe. Interpreting these clues requires theoretical stellar models in a wide range of masses in the low-metallicity regime. The existing literature is relatively rich with extremely metal-poor massive and low-mass stellar models. However, relatively little information is available on the evolution of intermediate-mass stars of Z ≲ 10-5, and the impact of the uncertain input physics on the evolution and nucleosynthesis has not yet been systematically analysed. Aims. We aim to provide the nucleosynthetic yields of intermediate-mass Z = 10-5 stars between 3 and 7.5 M⊙, and quantify the effects of the uncertain wind rates. We expect these yields could eventually be used to assess the contribution to the chemical inventory of the early universe, and to help interpret abundances of selected C-enhanced extremely metal-poor (CEMP) stars. Methods. We compute and analyse the evolution of surface abundances and nucleosynthetic yields of Z = 10-5 intermediate-mass stars from their main sequence up to the late stages of their thermally pulsing (Super) AGB phase, with different prescriptions for stellar winds. We use the postprocessing code MONSOON to compute the nucleosynthesis based on the evolution structure obtained with the Monash-Mount Stromlo stellar evolution code MONSTAR. By comparing our models and others from the literature, we explore evolutionary and nucleosynthetic trends with wind prescriptions and with initial metallicity (in the very low-Z regime). We also compare our nucleosynthetic yields to observations of CEMP-s stars belonging to the Galactic halo. Results. The yields of intermediate-mass extremely metal-poor stars reflect the effects of very deep or corrosive second dredge-up (for the most massive models), superimposed with the combined signatures of hot-bottom burning and third dredge-up. Specifically, we confirm the reported trend that models with initial metallicity Zini ≲ 10-3 give positive yields of 12C, 15N, 16O, and 26Mg. The 20Ne, 21Ne, and 24Mg yields, which were reported to be negative at Zini≳ 10-4, become positive for Z = 10-5. The results using two different prescriptions for mass-loss rates differ widely in terms of the duration of the thermally pulsing (Super) AGB phase, overall efficiency of the third dredge-up episode, and nucleosynthetic yields. We find that the most efficient of the standard wind rates frequently used in the literature seems to favour agreement between our yield results and observational data. Regardless of the wind prescription, all our models become N-enhanced EMP stars.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85098118155&origin=inward; http://dx.doi.org/10.1051/0004-6361/201937264; https://www.aanda.org/10.1051/0004-6361/201937264; https://www.aanda.org/10.1051/0004-6361/201937264/pdf; https://dx.doi.org/10.1051/0004-6361/201937264; https://www.aanda.org/articles/aa/full_html/2021/01/aa37264-19/aa37264-19.html
EDP Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know