Comparison of classical and Bayesian imaging in radio interferometry: Cygnus A with CLEAN and resolve
Astronomy and Astrophysics, ISSN: 1432-0746, Vol: 646
2021
- 25Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
CLEAN, the commonly employed imaging algorithm in radio interferometry, suffers from a number of shortcomings: In its basic version, it does not have the concept of diffuse flux, and the common practice of convolving the CLEAN components with the CLEAN beam erases the potential for super-resolution; it does not output uncertainty information; it produces images with unphysical negative flux regions; and its results are highly dependent on the so-called weighting scheme as well as on any human choice of CLEAN masks for guiding the imaging. Here, we present the Bayesian imaging algorithm resolve, which solves the above problems and naturally leads to super-resolution. We take a VLA observation of Cygnus A at four different frequencies and image it with single-scale CLEAN, multi-scale CLEAN, and resolve. Alongside the sky brightness distribution, resolve estimates a baseline-dependent correction function for the noise budget, the Bayesian equivalent of a weighting scheme. We report noise correction factors between 0.4 and 429. The enhancements achieved by resolve come at the cost of higher computational effort.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85100663054&origin=inward; http://dx.doi.org/10.1051/0004-6361/202039258; https://www.aanda.org/10.1051/0004-6361/202039258; https://www.aanda.org/10.1051/0004-6361/202039258/pdf; https://dx.doi.org/10.1051/0004-6361/202039258; https://www.aanda.org/articles/aa/full_html/2021/02/aa39258-20/aa39258-20.html
EDP Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know