Gas-phase formation and spectroscopic characterization of the disubstituted cyclopropenylidenes c -C(CH), c -C(CN), and c -C(CH)(CN)
Astronomy and Astrophysics, ISSN: 1432-0746, Vol: 671
2023
- 2Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
Article Description
Aims. The detection of c-C3HC2H and possible future detection of c-C3HCN provide new molecules for reaction chemistry in the dense interstellar medium (ISM) where R-C2H and R-CN species are prevalent. Determination of chemically viable c-C3HC2H and c-C3HCN derivatives and their prominent spectral features can accelerate potential astrophysical detection of this chemical family. This work characterizes three such derivatives: c-C3(C2H)2, c-C3(CN)2, and c-C3(C2H)(CN). Methods. Interstellar reaction pathways of small carbonaceous species are well replicated through quantum chemical means. Highly accurate cc-pVXZ-F12/CCSD(T)-F12 (X = D,T) calculations generate the energetics of chemical formation pathways as well as the basis for quartic force field and second-order vibrational perturbation theory rovibrational analysis of the vibrational frequencies and rotational constants of the molecules under study. Results. The formation of c-C3(C2H)2 is as thermodynamically and, likely, as stepwise favorable as the formation of c-C3HC2H, rendering its detectability to be mostly dependent on the concentrations of the reactants. Both c-C3(C2H)2 and c-C3(C2H)(CN) will be detectable through radioastronomical observation with large dipole moments of 2.84 D and 4.26 D, respectively, while c-C3(CN)2 has an exceedingly small and likely unobservable dipole moment of 0.08 D. The most intense frequency for c-C3(C2H)2 is v2 at 3316.9 cm-1 (3.01 μm), with an intensity of 140 km mol-1. The mixed-substituent molecule c-C3(C2H)(CN) has one frequency with a large intensity, v1, at 3321.0 cm-1 (3.01 μm), with an intensity of 82 km mol-1. The molecule c-C3(CN)2 lacks intense vibrational frequencies within the range that current instrumentation can readily observe. Conclusions. Both c-C3(C2H)2 and c-C3(C2H)(CN) are viable candidates for astrophysical observation, with favorable reaction profiles and spectral data produced herein, but c-C3(CN)2 will not be directly observable through any currently available remote sensing means, even if it forms in large abundances.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85150202075&origin=inward; http://dx.doi.org/10.1051/0004-6361/202245643; https://www.aanda.org/10.1051/0004-6361/202245643; https://dx.doi.org/10.1051/0004-6361/202245643; https://www.aanda.org/articles/aa/full_html/2023/03/aa45643-22/aa45643-22.html
EDP Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know