Gamma-ray bursts and X-ray melting of material to form chondrules and planets
Astronomy and Astrophysics, ISSN: 0004-6361, Vol: 409, Issue: 2, Page: L9-L12
2003
- 11Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Chondrules are millimeter sized objects of spherical to irregular shape that constitute the major component of chondritic meteorites that originate in the region between Mars and Jupiter and which fall to Earth. They appear to have solidified rapidly from molten or partially molten drops. The heat source that melted the chondrules remains uncertain. The intense radiation from a gamma-ray burst (GRB) is capable of melting material at distances up to 300 light years. These conditions were created in the laboratory for the first time when millimeter sized pellets were placed in a vacuum chamber in the white synchrotron beam at the European Synchrotron Radiation Facility (ESRF). The pellets were rapidly heated in the X-ray and gamma-ray furnace to above 1400 °C melted and cooled. This process heats from the inside unlike normal furnaces. The melted spherical samples were examined with a range of techniques and found to have microstructural properties similar to the chondrules that come from meteorites. This experiment demonstrates that GRBs can melt precursor material to form chondrules that may subsequently influence the formation of planets. This work extends the field of laboratory astrophysics to include high power synchrotron sources.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0141958792&origin=inward; http://dx.doi.org/10.1051/0004-6361:20031238; http://www.aanda.org/10.1051/0004-6361:20031238; http://www.aanda.org/10.1051/0004-6361:20031238/pdf; http://dx.doi.org/10.1051/0004-6361%3A20031238; https://dx.doi.org/10.1051/0004-6361%3A20031238; https://www.aanda.org/articles/aa/abs/2003/38/aaff191/aaff191.html
EDP Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know