Dense Neural Network for Classification of Seafloor Sediment using Backscatter Mosaic Feature
BIO Web of Conferences, ISSN: 2117-4458, Vol: 89
2024
- 6Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
- Mentions1
- News Mentions1
- News1
Most Recent News
New Science Research Has Been Reported by Researchers at Sepuluh Nopember Institute of Technology (Dense Neural Network for Classification of Seafloor Sediment using Backscatter Mosaic Feature)
2024 FEB 12 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- A new study on science is now available. According
Conference Paper Description
Water transportation plays a vital role in global economic activities, facilitating more than 85% of international trade and serving as a cost-effective and essential means to fulfill the demand for goods and services. Similarly, the Benoa Port, situated in the southern part of Denpasar City, operates in the same manner. By utilizing Multibeam Echo Sounder (MBES) backscatter data, backscatter mosaics can be generated to identify various seafloor sediment types, which consist of rock fragments, minerals, and organic materials. The characteristics of these sediments, such as grain size, density, composition, and others, can be observed. To improve the classification of sediments, the integration of backscatter data and backscatter features, such as ASM (Angular Second Moment), Energy, Contrast, and Correlation, can be employed. Supervised classification models like Dense Neural Network (DNN) can be utilized to accurately determine the types of seafloor sediments. The application of DNN modeling resulted in a training accuracy rate of 88% and a testing accuracy rate of 100%. The accuracy results delineated six distinct sediment types. Notably, sandy silt exhibited the highest distribution, accounting for 49.30%, whereas soft clayey silt registered the lowest distribution at 0.53%, as determined by their respective spatial prevalence.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know