Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances
ESAIM - Control, Optimisation and Calculus of Variations, ISSN: 1262-3377, Vol: 27
2021
- 9Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, we are concerned with the stabilization of linear port-Hamiltonian systems of arbitrary order N on a bounded 1-dimensional spatial domain (a, b). In order to achieve stabilization, we couple the system to a dynamic boundary controller, that is, a controller that acts on the system only via the boundary points a, b of the spatial domain. We use a nonlinear controller in order to capture the nonlinear behavior that realistic actuators often exhibit and, moreover, we allow the output of the controller to be corrupted by actuator disturbances before it is fed back into the system. What we show here is that the resulting nonlinear closed-loop system is input-to-state stable w.r.t. square-integrable disturbance inputs. In particular, we obtain uniform input-to-state stability for systems of order N = 1 and a special class of nonlinear controllers, and weak input-to-state stability for systems of arbitrary order N and a more general class of nonlinear controllers. Also, in both cases, we obtain convergence to 0 of all solutions as t →∞. Applications are given to vibrating strings and beams.
Bibliographic Details
EDP Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know