Artificial Intelligence: A New Frontier in Radiological Imaging
E3S Web of Conferences, ISSN: 2267-1242, Vol: 491
2024
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Conference Paper Description
Artificial intelligence (AI) is the development of computer systems that perform tasks that traditionally require human intelligence. One of the applications of AI is to help technologists and radiologists select appropriate patient protocols. Using AI methods, the accuracy of radiologists' diagnosis improved significantly by 37%. Currently, research is underway on the use of artificial intelligence in diagnostic medical imaging, which has demonstrated high sensitivity and accuracy in the identification of imaging abnormalities. In addition, artificial intelligence has the potential to improve tissue detection and characterization. Although the terms "artificial intelligence"and "machine learning"are often used interchangeably, it is important to note that machine learning is a specific subset of AI focusing on the use of algorithms to learn from the acquired data, enabling prediction, classification and understanding generation. With machine learning, a formal set of methodologies is based on solid mathematical foundations. The study of inventing and implementing algorithms that can learn from prior experiences is known as machine learning (ML). If you've observed a pattern of behaviour before, you can predict whether or not it'll happen again. That is, no prognosis can be made if no past examples exist. The major benefits of using machine learning in radiology will be the reduction of professional time and the accuracy of diagnostic outcomes. When compared to well-trained and experienced radiologists and technicians, several Al-based image segmentation methods in radiology systems have exhibited equivalent, if not better, performance.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know