Is the air handling capability of the Quadrox D pump dependent within an ECMO circuit? An in vitro study
Journal of Extra-Corporeal Technology, ISSN: 2969-8960, Vol: 42, Issue: 3, Page: 203-211
2010
- 6Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The occurrence of gaseous microemboli (GME) within the extracorporeal membrane oxygenation circuit is largely overlooked, as are methods to ameliorate this occurrence. We aimed to determine if the air handling capability of the Quadrox D oxygenator was dependent upon whether it was used in conjunction with a centrifugal or roller pump; and if application of a Pall air eliminating filter (AEF) would prevent circuit air introduction from intravenous infusions. Using a blood primed circuit 1 mL of air was infused pre pump. GME were quantified post pump and post oxygenator using the EDAC® Quantifier. Trials were conducted at 1 and 2 L/min flow. To prevent GME recirculation a Capiox SX18 was used in circuit with negative pressure applied to its oxygenator; an EDAC® cuvette distal to this device quantified GME recirculation. Following air infusion, 3-5 minute data recordings were carried out for each trial. Separate trials were carried out for centrifugal and roller pumps, and for each flow rate. The process was then repeated following the application of the AEF to the air infusion line. More GME were detected post Quadrox D when the centrifugal pump was used in comparison to the roller pump at 1 L/min (p ≤ .05), and 2 L/min (p = .05). A greater volume of air was detected post Quadrox D when used in conjunction with the centrifugal device at 1 L/min (p ≤ .05), and 2 L/min (p ≤ .05). Application of the AEF resulted in zero GME detected at any circuit location. The results of this study confirm that a greater total count and volume of GME are detected distal to the Quadrox D when used in conjunction with a Rotaflow centrifugal pump. Application of a Pall AEF to infusion and drug lines can prevent air introduction from this source.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know