Simulation of biodiesel production using hydro-esterification process from wet microalgae
MATEC Web of Conferences, ISSN: 2261-236X, Vol: 154
2018
- 4Citations
- 22Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Recently, algae have received a lot of attention as a new biomass source for the production of renewable energy, such as biodiesel. Conventionally, biodiesel is made through esterification or transesterification of oils where the process involves a catalyst and alcohol to be reacted in a reactor. However, this process is energy intensive for drying and extraction step. To overcome this situation, we studied simulation of a new route of hydro-esterification process which is combine hydrolysis and esterification processes for biodiesel production from wet microalgae. Firstly, wet microalgae treated by hydrolyzer to produce fatty acids (FAs), separated with separator, and then mixed with methanol and esterified at subcritical condition to produce fatty acid methyl esters (FAMEs) while HSO conducted as the catalyst. Energy and material balance of conventional and hydrolysis-esterification process was evaluated by Aspen Plus. Simulation result indicated that conventional route is energy demanding process, requiring 4.40 MJ/L biodiesel produced. In contrast, the total energy consumption of hydrolysis-esterification method can be reduced significantly into 2.43 MJ/L biodiesel. Based on the energy consumption comparison, hydro-esterification process is less costly than conventional process for biodiesel production.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85043325820&origin=inward; http://dx.doi.org/10.1051/matecconf/201815401007; https://www.matec-conferences.org/10.1051/matecconf/201815401007; https://www.matec-conferences.org/10.1051/matecconf/201815401007/pdf; https://dx.doi.org/10.1051/matecconf/201815401007; https://www.matec-conferences.org/articles/matecconf/abs/2018/13/matecconf_icet4sd2018_01007/matecconf_icet4sd2018_01007.html
EDP Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know