Stress-based topology optimization of compliant mechanisms using nonlinear mechanics
Mechanics and Industry, ISSN: 2257-7750, Vol: 21, Issue: 3
2020
- 11Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The present work demonstrates how a light structure can be easily designed through Topology Optimization even including complex analysis and sizing criteria such as hyperelastic Neo-Hookean materials for nonlinear analysis and aggregated stress constraints. The SIMP approach was adopted and two different strategies were analysed using an in house versatile MATLAB code. MMA was used as reference optimizer (in structural optimization) whereas a unified aggregation and relaxation method was adopted to deal with stress constraints. Feasibility was analyzed from the viewpoint of allowable stress verification. Two test cases are then studied: a morphing airfoil (for aeronautical applications) and a geometric inverter (for mechanics and bio-medical applications). For both, a hyperelastic Neo-Hookean material was chosen. Finally a complementary study on the effects of constraints and the input force intensity is also presented.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85083298710&origin=inward; http://dx.doi.org/10.1051/meca/2020011; https://www.mechanics-industry.org/10.1051/meca/2020011; https://www.mechanics-industry.org/10.1051/meca/2020011/pdf; https://dx.doi.org/10.1051/meca/2020011; https://www.mechanics-industry.org/articles/meca/full_html/2020/03/mi190235/mi190235.html
EDP Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know