Fair insurance premium rate in connected SEIR model under epidemic outbreak
Mathematical Modelling of Natural Phenomena, ISSN: 1760-6101, Vol: 16
2021
- 4Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, we aim to determine an optimal insurance premium rate for health-care in deterministic and stochastic SEIR models. The studied models consider two standard SEIR centres characterised by migration fluxes and vaccination of population. The premium is calculated using the basic equivalence principle. Even in this simple set-up, there are non-intuitive results that illustrate how the premium depends on migration rates, the severity of a disease and the initial distribution of healthy and infected individuals through the centres. We investigate how the vaccination program affects the insurance costs by comparing the savings in benefits with the expenses for vaccination. We compare the results of deterministic and stochastic models.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107918029&origin=inward; http://dx.doi.org/10.1051/mmnp/2021028; https://www.mmnp-journal.org/10.1051/mmnp/2021028; https://dx.doi.org/10.1051/mmnp/2021028; https://www.mmnp-journal.org/articles/mmnp/abs/2021/01/mmnp200346/mmnp200346.html
EDP Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know