Animated interval scatter-plot views for the exploratory analysis of large-scale microarray time-course data
Information Visualization, ISSN: 1473-8724, Vol: 4, Issue: 3, Page: 149-163
2005
- 18Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Microarray technologies are a relatively new development that allow biologists to monitor the activity of thousands of genes (normally around 8,000) in parallel across multiple stages of a biological process. While this new perspective on biological functioning is recognised as having the potential to have a significant impact on the diagnosis, treatment, and prevention of diseases, it is only through effective analysis of the data produced that biologists can begin to unlock this potential. A significant obstacle to achieving effective analysis of microarray time-course is the combined scale and complexity of the data. This inevitably makes it difficult to reveal certain significant patterns in the data. In particular, it is less dominant patterns and, specifically, patterns that occur over smaller intervals of an experiment's overall time-frame that are more difficult to find. While existing techniques are capable of finding either unexpected patterns of activity over the majority of an experiment's time-frame or expected patterns of activity over smaller intervals of the time-frame, there are no techniques, or combination of techniques, that are suitable for finding unsuspected patterns of activity over smaller intervals. In order to overcome this limitation we have developed the Time-series Explorer, which specifically supports biologists in their attempts to reveal these types of pattern by allowing them to control an animated interval scatter-plot view of their data. This paper discusses aspects of the technique that make such an animated overview viable and describes the results of a user evaluation assessing the practical utility of the technique within the wider context of microarray time-series analysis as a whole. © 2005, SAGE Publications. All rights reserved.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know