Suitability of Various Ureolytic Microbes for Potential Soil Strengthening via Biocementation
Journal of Hazardous, Toxic, and Radioactive Waste, ISSN: 2153-5515, Vol: 28, Issue: 1
2024
- 3Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Biocementation or microbially induced calcium carbonate precipitation (MICP) is a feasible biochemical process in enhancing the behavior of geomaterial, that is, soil strengthening and/or remediation. This biochemical process encounters several biotic and abiotic challenges while implementing it in real field conditions. With this, the present study aims to investigate the efficiency and suitability of different ex situ and in situ ureolytic microbes in enhancing the geotechnical properties of the sand in different environmental conditions. The studies of MICP revealed a hindrance of microbial growth and ureolytic enzyme activity of one ex situ strain of S. pasteurii in the prevailing soil anoxic (air restrict) or anaerobic condition. The hindrance was the major reason for the minimal amount of precipitation and no strength gain in the biomodified sample. In contrast, high compressive strength was achieved with an abundant amount of precipitation for the sample catalyzed by another strain of S. pasteurii and isolated Proteus species. The results showed that the specific urease activity varies substantially pertaining to the type of microbes in similar chemical and environmental conditions which directly impact the biomineral precipitation and the rate of strength enhancement. The whole study recommends two major tools, that is, the value of specific urease activity and the ureolysis rate in the prevailing soil condition to compute the suitability of the ureolytic microbe for a successful MICP implementation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know