Theoretical and Experimental Strategy for the Control and Mitigation of Efflorescence in Metakaolin-Based Geopolymer
Journal of Materials in Civil Engineering, ISSN: 1943-5533, Vol: 35, Issue: 7
2023
- 3Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Compared with portland-cement-based matrices, the high mechanical strength, satisfactory durability, and sustainable features of geopolymeric matrices have brought great interest in the civil construction sector. Excessive activator content in a geopolymer mixture can cause efflorescence, a phenomenon related to the unreacted alkalis that compromise the mechanical properties and aesthetics of the structures. This article proposes applying statistical mixture design (SMD), associated with simultaneous optimization for the dosage of geopolymeric matrices, to evaluate and mitigate efflorescence. Based on the extreme vertices screening design, the formulations were made using metakaolin as a precursor, NaOH and sodium silicate as the activator, and sand and superplasticizer. The formulation with the lowest efflorescence formation, highest compressive strength, and adequate workability was the one whose molarity of NaOH was equal to 9.02 M, and the ratios Na2O/Al2O3, SiO2/Al2O3, and H2O/Na2O were equivalent to 1.43, 2.65, and 8.36, respectively. In addition, the Na2O/Al2O3 ratio was the predominant factor for efflorescence occurrence. SMD associated with simultaneous optimization is a technically viable alternative for minimizing free sodium in geopolymeric matrices.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know