Snow and Ice Melting Performance Evaluation and Economic-Environmental Assessment of a Novel Steel Slag-Based Composite Phase Change Aggregate Asphalt Pavement
Journal of Transportation Engineering Part B: Pavements, ISSN: 2573-5438, Vol: 150, Issue: 1
2024
- 3Citations
- 16Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Reports Outline Environmental Assessment Study Results from Huazhong University of Science and Technology (Snow and Ice Melting Performance Evaluation and Economic-environmental Assessment of a Novel Steel Slag-based Composite Phase Change ...)
2024 FEB 29 (NewsRx) -- By a News Reporter-Staff News Editor at Ecology Daily News -- Researchers detail new data in Environment - Environmental Assessment.
Article Description
The traditional mechanical equipment/chemical salt approach for pavement snow/ice removal is costly and may cause serious environmental pollution problems. To facilitate the pavement snow/ice melting in a more economical and sustainable way, a novel steel slag-based composite phase change aggregate (SS-CPCA) asphalt pavement was developed, and its technical performance was experimentally evaluated. The experimental results revealed that: (1) after 14 cycles of freeze-thaw treatment, the SS-CPCA asphalt pavement has an identical temperature regulation performance as its initial state, identifying that its long-term thermal durability is promising; (2) snow layer with a thickness of 5 mm that is covered on the SS-CPCA asphalt pavement at 0°C can be melted completely within 32 min, verifying that the SS-CPCA asphalt pavement has a satisfactory snow melting performance; and (3) a decrease of environmental temperature can result in an increase of ice melting rate (IMR) and a decrease of effective ice melting time (EIMT), indicating that the IMR and EIMT should be balanced to each other when selecting appropriate PCMs for pavement snow/ice melting. In addition, the economic-environmental performance of the SS-CPCA asphalt pavement was examined through a case study. It was found that, as compared with conventional asphalt pavements, it has a relatively higher initial construction cost. However, when taking the snow/ice removal cost into account, its total cost is significantly lower for the second-year application. Further, the SS-CPCA asphalt pavement can dramatically reduce CO2 emissions as compared with the traditional snow/ice melting approaches. Thus, it can be concluded that the newly developed SS-CPCA asphalt pavement can provide considerable economic-environmental benefits toward the pavement's snow/ice melting.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know