A new angle into time-resolved photoacoustic spectroscopy: A layered prism cell increases experimental flexibility
Review of Scientific Instruments, ISSN: 0034-6748, Vol: 69, Issue: 6, Page: 2246-2258
1998
- 33Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A new pulsed photoacoustic calorimetry cell that uses transmission of light through a pair of dovetail prisms is discussed. The layered prism cell (LPC) combines the enhanced time-resolution capabilities of the "layered" front-face irradiation geometry with the zero-background and broadband flexibility of the classical cuvette geometry. This work provides a phenomenological description of photoinduced pressure changes to yield an analytical expression to calculate the magnitude of the photoinduced acoustic pressure wave in a series of solvents. The mechanical to electrical conversion efficiency for an ultrasonic transducer coupled to the LPC is presented to provide a comparison of the experimentally observed photoinduced acoustic signal amplitudes to the empirically calculated acoustic signal amplitudes. An analysis of the background signals due to absorption and electrostriction of the media provides insight into the issues of sensitivity and limitations of pulsed photoacoustic experiments. The LPC provides several benefits to increase the flexibility of the photoacoustic spectroscopy: (1) greater sensitivity, (2) enhanced time resolution, and (3) the ability to obtain kinetic data in complex solvent mixtures. Under optically dilute conditions in the layered cell geometry, the acoustic transient time, τa, approaches zero because the photoinduced acoustic wave homogeneously expands against the walls of the photoacoustic cell. To demonstrate the unique capabilities of the LPC, rates of hydrogen abstraction by tert-butoxyl radical from solvent mixtures containing ethyl and methyl alcohol are presented. © 1998 American Institute of Physics.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0032085854&origin=inward; http://dx.doi.org/10.1063/1.1148928; https://pubs.aip.org/rsi/article/69/6/2246/435450/A-new-angle-into-time-resolved-photoacoustic; http://aip.scitation.org/doi/10.1063/1.1148928; https://aip.scitation.org/action/captchaChallenge?redirectUrl=https%3A%2F%2Faip.scitation.org%2Fdoi%2F10.1063%2F1.1148928
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know