Radiation response of n-type base InP solar cells
Journal of Applied Physics, ISSN: 0021-8979, Vol: 90, Issue: 7, Page: 3558-3565
2001
- 12Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The effects of particle irradiation on the electrical properties of high efficiency p/n InP solar cells have been studied using a variety of techniques including current-voltage and spectral quantum efficiency measurements (QE), electron beam induced currents (EBIC), and deep level transient spectroscopy. A detailed analysis of the radiation response of the solar cell photovoltaic response is presented, and the primary damage mechanisms are identified. Data measured after irradiation by protons of various energies are correlated in terms of displacement damage dose to produce a characteristic degradation curve for the p/n InP technology. This characteristic curve is compared to that of the n/p InP technology to provide an assessment of the relative radiation hardness of the p/n devices. Radiation-induced decreases in the minority carrier diffusion length in both the p-type emitter and n-type base at low damage levels have been extracted from the QE and EBIC measurements, and damage coefficients have been determined. At high damage levels, EBIC profiles suggest that the primary device degradation mechanism is an increase in bulk resistivity due to electron trapping in the base. However, capacitance-voltage measurements did not indicate any change in the junction capacitance. A model to account for these effects based on radiation-induced defect kinetics is presented. © 2001 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know