Pressure derivatives in the classical molecular-dynamics ensemble
Journal of Chemical Physics, ISSN: 0021-9606, Vol: 124, Issue: 6, Page: 64104
2006
- 37Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The calculation of thermodynamic state variables, particularly derivatives of the pressure with respect to density and temperature, in conventional molecular-dynamics simulations is considered in the frame of the comprehensive treatment of the molecular-dynamics ensemble by Lustig [J. Chem. Phys. 100, 3048 (1994)]. This paper improves the work of Lustig in two aspects. In the first place, a general expression for the basic phase-space functions in the molecular-dynamics ensemble is derived, which takes into account that a mechanical quantity G is, in addition to the number of particles, the volume, the energy, and the total momentum of the system, a constant of motion. G is related to the initial position of the center of mass of the system. Secondly, the correct general expression for volume derivatives of the potential energy is derived. This latter result solves a problem reported by Lustig [J. Chem. Phys. 109, 8816 (1998)] and Meier [Computer Simulation and Interpretation of the Transport Coefficients of the Lennard-Jones Model Fluid (Shaker, Aachen, 2002)] and enables the correct calculation of the isentropic and isothermal compressibilities, the speed of sound, and, in principle, all higher pressure derivatives. The derived equations are verified by calculations of several state variables and pressure derivatives up to second order by molecular-dynamics simulations with 256 particles at two state points of the Lennard-Jones fluid in the gas and liquid regions. It is also found that it is impossible for systems of this size to calculate third- and higher-order pressure derivatives due to the limited accuracy of the algorithm employed to integrate the equations of motion. © 2006 American Institute of Physics.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know