Fabrication of oriented L1-FeCuPd and composite bcc-FeL1 -FeCuPd nanoparticles: Alloy composition dependence of magnetic properties
Journal of Applied Physics, ISSN: 0021-8979, Vol: 99, Issue: 8
2006
- 14Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Oriented and well-isolated L 10 -FeCuPd ternary alloy nanoparticles have been fabricated by electron-beam evaporation followed by postdeposition annealing. A single L 10 phase was formed in the FeCuPd nanoparticles with (Fe+Cu) content lower than 48 at. %. A strong preferential c -axis orientation along the film normal direction was achieved by Cu addition, which leads to a strong perpendicular magnetic anisotropy. Also, a lowering of the ordering temperature by 50 K compared to the binary L 10 -FePd nanoparticles was achieved by Cu addition. By contrast, composite particles composed of the bcc Fe and the L 10 -FeCuPd were formed when the (Fe+Cu) content was higher than 52 at. %. Coexistence of the bcc Fe and the L 10 -FeCuPd was confirmed by high-resolution transmission electron microscopy and nanobeam electron diffraction. It was found that perpendicular magnetic anisotropy of the L 10 -FeCuPd nanoparticles on the NaCl substrate is sensitive to the alloy composition. © 2006 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know