Transistor performance of top rough surface of pentacene measured by laminated double insulated-gate supported on a poly(dimethylsiloxanes) base structure
Applied Physics Letters, ISSN: 0003-6951, Vol: 88, Issue: 3, Page: 1-3
2006
- 30Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We report the fabrication and electrical characterization of pentacene field-effect transistors with a laminated double insulated-gate using poly(dimethylsiloxanes) (PDMS) as their supporting structure. The ability of PDMS to conform to surfaces enables us to directly evaluate the device performance of the top rough surface of the pentacene active layer (the pentacene-air interface). The mobility measured for the top surface was only about 20% slightly lower than that of the bottom surface. Device stability under ambient conditions is evaluated. This device structure is useful for the characterization of electrical transport in both the top and bottom surface of a thin film simultaneously. © 2006 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know