PlumX Metrics
Embed PlumX Metrics

Single particle and collective hydration dynamics for hydrophobic and hydrophilic peptides

Journal of Chemical Physics, ISSN: 0021-9606, Vol: 126, Issue: 21, Page: 215101
2007
  • 20
    Citations
  • 0
    Usage
  • 27
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

We have conducted extensive molecular dynamics simulations to study the single particle and collective dynamics of water in solutions of N -acetyl-glycine-methylamide, a model hydrophilic protein backbone, and N -acetyl-leucine-methylamide, a model (amphiphilic) hydrophobic peptide, as a function of peptide concentration. Various analytical models commonly used in the analysis of incoherent quasielastic neutron scattering (QENS), are tested against the translational and rotational intermediate scattering function, the mean square displacement of the water molecule center of mass, and fits to the second-order rotational correlation function of water evaluated directly from the simulation data. We find that while the agreement between the model-free analysis and analytical QENS models is quantitatively poor, the qualitative feature of dynamical heterogeneity due to caging is captured well by all approaches. The center of mass collective and single particle intermediate scattering functions of water calculated for these peptide solutions show that the crossover from collective to single particle-dominated motions occurs at a higher value of Q for high concentration solutions relative to low concentration because of the greater restriction in movement of water molecules due to confinement. Finally, we have shown that at the same level of confinement of the two peptides, the aqueous amphiphilic amino acid solution shows the strongest deviation between single particle and collective dynamics relative to the hydrophilic amino acid, indicating that chemical heterogeneity induces even greater spatial heterogeneity in the water dynamics. © 2007 American Institute of Physics.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know