PlumX Metrics
Embed PlumX Metrics

On the exchange-hole model of London dispersion forces

Journal of Chemical Physics, ISSN: 0021-9606, Vol: 127, Issue: 2, Page: 024108
2007
  • 49
    Citations
  • 0
    Usage
  • 48
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

First-principles derivation is given for the heuristic exchange-hole model of London dispersion forces by Becke and Johnson [J. Chem. Phys. 122, 154104 (2005)]. A one-term approximation is used for the dynamic charge density response function, and it is shown that a central nonempirical ingredient of the approximate nonexpanded dispersion energy is the charge density autocorrelation function, a two-particle property, related to the exchange-correlation hole. In the framework of a dipolar approximation of the Coulomb interaction around the molecular origin, one obtains the so-called Salem-Tang-Karplus approximation to the C6 dispersion coefficient. Alternatively, by expanding the Coulomb interaction around the center of charge (centroid) of the exchange-correlation hole associated with each point in the molecular volume, a multicenter expansion is obtained around the centroids of electron localization domains, always in terms of the exchange-correlation hole. In order to get a formula analogous to that of Becke and Johnson, which involves the exchange-hole only, further assumptions are needed, related to the difficulties of obtaining the expectation value of a two-electron operator from a single determinant. Thus a connection could be established between the conventional fluctuating charge density model of London dispersion forces and the notion of the "exchange-hole dipole moment" shedding some light on the true nature of the approximations implicit in the Becke-Johnson model. © 2007 American Institute of Physics.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know