Microscopic structure and dynamics of molten SeTe alloys
Journal of Chemical Physics, ISSN: 0021-9606, Vol: 127, Issue: 14, Page: 144707
2007
- 3Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this work we investigate the microscopic structure and dynamics of the molten equimolar alloy, Se50 Te50 using a combination of neutron and x-ray diffraction experiments, reverse Monte Carlo analysis, and first principles molecular dynamics. The range of temperatures studied covers the semiconductor/metal transition. From our results it can be seen that the latter is associated with an increase in coordination numbers and a reduced tendency to heterocoordination. In agreement with previous inelastic neutron scattering experiments, our molecular dynamics calculation predict a certain widening of the stretching vibrational modes band in connection with the increase of coordination and the presence of longer bonds in the metallic phase. © 2007 American Institute of Physics.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know