Three-point frequency fluctuation correlation functions of the OH stretch in liquid water
Journal of Chemical Physics, ISSN: 0021-9606, Vol: 128, Issue: 10, Page: 104507
2008
- 35Citations
- 32Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Characterizing the dynamics of the OH stretch in isotopically substituted liquid water (HOD in D2 O) in terms of three-point frequency fluctuation correlation functions and joint probability densities shows that dynamics during hydrogen bond rearrangements occur primarily along a coordinate which is perpendicular to the spectroscopic coordinate. Molecular dynamics simulations show that three-point correlation functions are sensitive to this motion, unlike two-point correlation functions, and can select sets of trajectories which linger in the area of the transition state. Three-dimensional-infrared correlation spectroscopy could potentially measure these dynamics, though motional narrowing significantly changes the shape of the resulting spectra. © 2008 American Institute of Physics.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know