Microthermography of diode lasers: The impact of light propagation on image formation
Journal of Applied Physics, ISSN: 0021-8979, Vol: 105, Issue: 1
2009
- 21Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We analyze the effect of propagating infrared thermal radiation within a diode laser on its thermal image taken by a thermocamera. A ray-tracing analysis shows that this effect substantially influences image formation on a spatial scale of 10 μm, i.e., in the domain of microthermography. The main parameter affecting the thermal radiation spread in the semitransparent semiconductor structure is the free carrier concentration in the substrate, governing its absorption. Two applications are presented: a quantum dot laser and a quantum-well laser, where independent thermal models are developed using the finite element method (FEM). Our ray-tracing analysis verifies the FEM simulated temperature profiles by interlinking them to experimental temperature maps obtained through microthermography. This represents a versatile experimental method for extracting reliable bulk-temperature data from diode lasers on a microscopic scale. © 2009 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know