Size effect of nanometer vacuum gap thermionic power conversion device with CsI coated graphite electrodes
Applied Physics Letters, ISSN: 0003-6951, Vol: 95, Issue: 22
2009
- 29Citations
- 29Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Cesium iodide (CsI) coated graphite is a good candidate for an electrode material of a thermionic power generation device due to its low work function. In this letter, a thermionic device with a nanometer-scale vacuum gap between a CsI coated graphite emitter and a collector will be investigated while considering various gap-size effects. It is shown that a nanometer scale gap-size not only affects electron transport but also photon transport, and that all of these effects must be taken into account when estimating the device's performance. © 2009 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know