Field dependence of the magnetocaloric effect in core-shell nanoparticles
Journal of Applied Physics, ISSN: 0021-8979, Vol: 107, Issue: 9
2010
- 69Citations
- 41Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
The field dependence of the magnetic entropy change peak at the low temperature surface spin freezing transition in chemically synthesized, monodispersed Co, Co-Ag, and Ni-Ag core-shell nanoparticles is studied, with the aim of gaining insight into the critical exponents of this transition. It is evidenced that although the magnitude of the peak entropy change and position of the peak can be tuned by changing the composition and nature (metallic or organic) of the shell and surfactant layers, the characteristics of the spin freezing transition are not altered. The field dependence of the refrigerant capacity also confirms this finding. © 2010 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know