Acoustic emission from plastic deformation of a pure single crystal
Journal of Applied Physics, ISSN: 0021-8979, Vol: 72, Issue: 5, Page: 1812-1820
1992
- 36Citations
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Acoustic emission (AE) during plastic deformation is analyzed for a pure single crystal neglecting the effects of grain boundaries, impurities, and second-phase particles. Acceleration of a moving dislocation is considered to be the principal AE source. There are two major mechanisms of dislocation motion related to acceleration, initial, and continuous oscillatory motion. Initial motion induced by the creation of mobile dislocations is modeled as a step function of velocity. Continuous oscillatory motion produced by interactions with neighboring dislocations is modeled as a harmonic function. These mechanisms vary with strain and strain rate due to dislocation multiplication. AE can thus be described in terms of strain and strain rate. Annihilation at a free surface is also regarded as an AE source in addition to the initial and oscillatory motions. The kinetic and strain energies stored around a moving dislocation are dissipated during annihilation, and can be related to AE. The frequency spectrum of AE is also determined. A shift of the spectrum to higher frequencies with increasing strain is explained by an increase in the interaction force between dislocations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know