Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes
Journal of Chemical Physics, ISSN: 0021-9606, Vol: 134, Issue: 3, Page: 034504
2011
- 37Citations
- 64Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations37
- Citation Indexes37
- 37
- CrossRef34
- Captures64
- Readers64
- 64
Article Description
We report a detailed study of ultrafast exciton dephasing processes in semiconducting single-walled carbon nanotubes employing a sample highly enriched in a single tube species, the (6,5) tube. Systematic measurements of femtosecond pump-probe, two-pulse photon echo, and three-pulse photon echo peak shift over a broad range of excitation intensities and lattice temperature (from 4.4 to 292 K) enable us to quantify the timescales of pure optical dephasing (T 2*), along with exciton-exciton and exciton-phonon scattering, environmental effects as well as spectral diffusion. While the exciton dephasing time (T 2) increases from 205 fs at room temperature to 320 fs at 70 K, we found that further decrease of the lattice temperature leads to a shortening of the T 2 times. This complex temperature dependence was found to arise from an enhanced relaxation of exciton population at lattice temperatures below 80 K. By quantitatively accounting the contribution from the population relaxation, the corresponding pure optical dephasing times increase monotonically from 225 fs at room temperature to 508 fs at 4.4 K. We further found that below 180 K, the pure dephasing rate (1/T 2*) scales linearly with temperature with a slope of 6.7 0.6 eV/K, which suggests dephasing arising from one-phonon scattering (i.e., acoustic phonons). In view of the large dynamic disorder of the surrounding environment, the origin of the long room temperature pure dephasing time is proposed to result from reduced strength of exciton-phonon coupling by motional narrowing over nuclear fluctuations. This consideration further suggests the occurrence of remarkable initial exciton delocalization and makes nanotubes ideal to study many-body effects in spatially confined systems. © 2011 American Institute of Physics.
Bibliographic Details
AIP Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know