Comprehensive insights into point defect and defect cluster formation in CuInSe
Applied Physics Letters, ISSN: 0003-6951, Vol: 98, Issue: 9
2011
- 57Citations
- 44Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The concentration of native point defects in CuInSe powder material as a function of stoichiometry has been experimentally determined by neutron powder diffraction. A correlation between the Cu/In ratio and the density of V as well as In has been established and their concentrations are quantified. It is demonstrated, that assuming the spontaneous formation of defect pairs, the density of native point defects is reduced significantly by an order of magnitude. The functionality of a solar device, assuming same conditions like in the analyzed material, may be explained by a neutralization due to the formation of electrically inactive defect complexes. © 2011 American Institute of Physics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know